Structure of AGCM-Simulated Convectively Coupled Kelvin Waves and Sensitivity to Convective Parameterization
نویسندگان
چکیده
A study of the convectively coupled Kelvin wave (CCKW) properties from a series of atmospheric general circulation model experiments over observed sea surface temperatures is presented. The simulations are performed with two different convection schemes (a mass flux scheme and a moisture convergence scheme) using a range of convective triggers, which inhibit convection in different ways. Increasing the strength of the convective trigger leads to significantly slower and more intense CCKW activity in both convection schemes. With the most stringent trigger in the mass flux scheme, the waves have realistic speed and variance, and also exhibit clear shallow-to-deep-to-stratiform phase tilts in the vertical, as in observations. While adding a moisture trigger results in vertical phase tilts in the mass flux scheme, the moisture convergence scheme CCKWs show no such phase tilts even with a stringent convective trigger. The changes in phase speed in the simulations are interpreted using the concept of “gross moist stability” (GMS). Inhibition of convection results in a more unstable tropical atmosphere in the time mean, and convection is shallower on average as well. Both of these effects lead to a smaller GMS, which leads to slower propagation of the waves as expected from theoretical studies. Effects such as changes in radiative heating, atmospheric humidity, and vertical velocity following the wave have a relatively small effect on the GMS as compared with the time mean state determined by the convection scheme.
منابع مشابه
The Impacts of Convective Parameterization and Moisture Triggering on AGCM-Simulated Convectively Coupled Equatorial Waves
This study examines the impacts of convective parameterization and moisture convective trigger on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). Three different convection schemes are used, including the simplified Arakawa–Schubert (SAS) scheme, the Kuo (1974) scheme, and the moist convective adjustment (MCA) ...
متن کاملA Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part I: Linear Analysis
Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here...
متن کاملA Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part II: Nonlinear Simulations
Observations in the Tropics point to the important role of three cloud types, congestus, stratiform, and deep convective clouds, besides ubiquitous shallow boundary layer clouds for both the climatology and large-scale organized anomalies such as convectively coupled Kelvin waves, two-day waves, and the Madden–Julian oscillation. Recently, the authors have developed a systematic model convectiv...
متن کاملEffects of cloud-radiative heating on atmospheric general circulation model (AGCM) simulations of convectively coupled equatorial waves
[1] This study examines the effects of cloud-radiative heating on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). The strength of cloud-radiative heating is adjusted by modifying the autoconversion rate needed for cloud condensates to grow up to raindrops. The results show that increasing the autoconversion rat...
متن کاملConvectively Coupled Kelvin Waves in an Idealized Moist General Circulation Model
The dynamics of convectively coupled Kelvin waves and their dependence on convection scheme parameters are studied within a simplified moist general circulation model. The model consists of the primitive equations on the sphere over zonally symmetric aquaplanet, slab mixed layer ocean boundary conditions, and idealized physical parameterizations including gray radiative transfer and a simplifie...
متن کامل